Profesor | Juan Carlos Alonso Huitrón | ma ju vi | 12 a 14 | 103 |
Profesor | Angélica Carrillo Verduzco | |||
Ayudante | Ángel Eduardo Escárcega Mendicuti | |||
Ayudante | Víctor Manuel Guerrero Sosa |
ELECTROMAGNETISMO I (Semestre 2024-2)
(Curso presencial)
Profesor: Juan Carlos Alonso Huitrón, IIM-C-214, alonso@unam.mx
Profesor: Angélica Carrillo Verduzco, IIM-C-213, acv29@ciencias.unam.mx
Ayudante 1: Ángel Eduardo Escárcega Mendicuti, aeem@ciencias.unam.mx
Ayudante 2: Victor Manuel Guerrero Sosa, vsosa597@ciencias.unam.mx
Grupo: 8135, Clave: 0419
Horario: Ma. Ju. Vi. 12:00 a 14:00 hrs. Horas por semestre: 96 hrs
Ciclo escolar: martes 30 de enero de 2023 al viernes 24 de mayo de 2024
Dinámica del curso presencial:
Objetivos
A partir de la descripción de resultados experimentales sobre los fenómenos electromagnéticos se identifican los conceptos clave, se formulan los principios básicos y ecuaciones fundamentales de la teoría del electromagnetismo, se desarrollan métodos de análisis y se estudian sus aplicaciones.
TEMARIO
1. FUERZAS ENTRE CUERPOS ELÉCTRICAMENTE CARGADOS EN REPOSO (12 hrs)
1.1 Carga eléctrica. Formas de electrización. Aislantes y conductores.
1.2 Ley de Coulomb. Principio de superposición.
1.3 Campo eléctrico. Líneas de campo eléctrico.
1.4 Campo eléctrico de distribuciones de carga.
1.5 Campo eléctrico de un dipolo eléctrico.
1.6 Flujo de campo eléctrico.
1.7 Ley de Gauss.
1.8 Divergencia de una función vectorial. Teorema de la divergencia
1.9 Forma diferencial de la Ley de Gauss.
2. ENERGÍA DE CUERPOS ELÉCTRICAMENTE CARGADOS EN REPOSO
(12 hrs)
2.1 Energía potencial eléctrica.
2.2 Potencial electrostático.
2.3 Potencial electrostático de una carga puntual, de varias cargas puntuales y
de distribuciones de carga. Potencial eléctrico de un dipolo eléctrico.
2.4 Cálculo del potencial eléctrico a partir del campo eléctrico.
2.5 Superficies equipotenciales
2.6 Gradiente de una función escalar y obtención del campo eléctrico a partir del
potencial eléctrico. Ecuación de Poisson
2.7 Energía de una distribución de cargas.
2.8 Conductores cargados.
2.9 Condensadores. Capacitancia.
2.10 Energía almacenada en un condensador. Densidad de energía electrostática.
3. CAMPOS ELECTROSTÁTICOS EN MEDIOS DIELÉCTRICOS (10 hrs)
3.1 Dieléctricos. Capacitancia con dieléctricos. Constante dieléctrica
3.2 Momentos de una distribución de carga.
3.3 Momentos dipolares inducidos y permanentes.
3.4 Polarización y susceptibilidad eléctrica. Densidades de carga libre y
polarización.
3.5 Ley de Gauss en medios dieléctricos.
3.6 Desplazamiento eléctrico. Permitividad eléctrica.
3.7 Condensadores con dieléctricos.
3.8 Densidad de energía electrostática en medios dieléctricos.
4. CARGAS EN MOVIMIENTO (10 hrs)
4.1 Movimiento de cargas eléctricas en campos eléctricos externos.
4.2 Corriente eléctrica y densidad de corriente.
4.3 Ley de conservación de la carga eléctrica.
4.4 Resistencia eléctrica. Ley de Ohm macroscópica y microscópica.
4.5 Efecto Joule.
4.6 Circuitos eléctricos. Leyes de Kirchhoff.
4.7 Circuito RC.
5. CAMPO MAGNÉTICO (12 hrs)
5.1 Fuerza entre imanes y campo magnético
5.2 Fuerza magnética entre alambres con corriente eléctrica
5.3 Fuerza magnética sobre cargas eléctricas en movimiento.
5.4 Definición de campo magnético.
5.5 Campos magnéticos producidos por corrientes eléctricas. Ley de Biot-Savart.
5.6 Líneas de campo magnético. Ley circuital de Ampère.
5.7 Flujo de campo magnético. Ley de Gauss del magnetismo.
5.8 Rotacional de una función vectorial.
5.9 Teorema de Stokes y forma diferencial de la Ley de Ampère
5.10 Momento dipolar magnético
5.11 Torca de un campo magnético sobre un dipolo magnético. Energía de un dipolo magnético en un campo magnético.
5.12 Fuerza de Lorentz. Movimiento de cargas eléctricas en campos magnéticos y eléctricos. Aplicaciones.
6. CAMPOS MAGNETOSTÁTICOS EN MEDIOS MATERIALES (8 hrs)
6.1 Momentos magnéticos permanentes e inducidos.
6.2 Magnetización y susceptibilidad magnética.
6.3 Ferromagnetismo, paramagnetismo y diamagnetismo.
6.4 Electroimanes.
6.5 Corrientes libres y de magnetización.
6.6 Ley de Ampère en medios materiales.
6.7 Campo de intensidad magnética. Permeabilidad.
7. INDUCCIÓN ELECTROMAGNÉTICA (10 hrs)
7.1 Ley de Faraday
7.2 Forma diferencial de la Ley de Faraday.
7.3 Generador de corriente alterna
7.4 Autoinductancia e Inductancia mutua.
7.5 Circuito RL.
7.6 Densidad de energía magnética
7.7 Oscilaciones de un circuito LC.
7.8 Circuitos RCL. Impedancia.
7.9 Circuitos de corriente alterna. Transformador.
8. ECUACIONES DE MAXWELL (8 hrs)
8.1 Ley de Ampère - Maxwell. Corriente de desplazamiento.
8.2 Propiedades dinámicas del campo electromagnético.
8.3 Ecuaciones de Maxwell.
8.4 La ecuación de onda.
9. ONDAS ELECTROMAGNÉTICAS (8 hrs)
9.1 Ondas electromagnéticas en el vacío.
9.2 Velocidad de propagación.
9.3 Transversalidad. Polarización.
9.4 Vector de Poynting.
9.5 Densidades de energía y de flujo de energía.
9.6 Ondas electromagnéticas en medios dieléctricos.
9.7 Índice de refracción.
9.8 Espectro electromagnético. Sistemas radiantes.
10. TEORÍA DE LA RELATIVIDAD Y ELECTRODINÁMICA (6 hrs)
10.1 Las ecuaciones de Maxwell y las transformaciones de Galileo.
10.2 Experimento de Michelson - Morley.
10.3 Transformaciones de Lorentz.
10.4 Algunas consecuencias de las transformaciones de Lorentz. Ejemplos y
paradojas.
10.5 Postulados de la Teoría Especial de la Relatividad.
10.6 Cinemática y dinámica relativista
10.7 Teoría cuántica de la luz. Fotones
Bibliografía básica
· Halliday, Resnick, Walker. Fundamentos de Física. Vol. II, 8ª. Edición, Grupo
Editorial Patria, (2011).
· Purcell E.M., Electricidad y Magnetismo. Berkeley Physics Course, Vol. 2, 2ª. Edición, Editorial Reverté, (2005).
· Tipler /Mosca. Física para la ciencia y la tecnología. Vol. 2A, 6ª. Edición, Editorial Reverté, (2010).
· Resnick R., Halliday, D., Krane, S.K., Física, Vol. II, 5ª. edición, Compañía Editorial
Continental, México. (1996).
· Serway R. A. & Jewett J. W, Física II, 3ª. Edición, Thomson Learning, México
(2004).
· Serway, R. A., Electricidad y Magnetismo, Thomson Learning, México (2004).
· Taylor and Wheeler, Space Time Physics, 1966.
· Resnick R. Introducción a la Teoría Especial de la Relatividad, Limusa, México
(1977).
Bibliografía complementaria
· Alonso, M., Finn, E.J., Física, Vol. II: Campos y ondas, AddisonWesley Iberoamericana,
México (1995).
· Ohanian H. C & Markert J. T., Física para Ingeniería y Ciencias, Vol. 2, 3ª. Edición,
Mc-Graw Hill (2009).
· Sears F. W., Zemansky M. W., Young H. D., Freedman R. A., Física Universitaria,
Vol. 2, novena edición, Pearson Education, México (1999).
Historia del Electromagnetismo
· Gamow G., Biografía de la Física. Alianza Editorial. Madrid (1983).
· Ordoñez J., Navarro V. y Sánchez Ron J . M. Historia de la Ciencia. Colección
Austral. Editorial Espasa. Madrid (2003).
· Segrè E. De los Rayos X a los Quarks. Folios Ediciones S. A. México (1983).
· Whittaker E. A History of the Theories of Ether and Electricity. Dover. New
York (1989).
Tareas-examen semanales: 60 %
Exámenes parciales: 40 %
Notas: 1) no se aceptan tareas extemporáneas, 2) si se detectan copias de tareas se divide la calificación entre el número de copias, 3) solamente los alumnos que tengan más del 80% de tareas entregadas tendrán derecho a reposición de algún examen parcial, 4) no hay examen final.