Profesor | Lucía Medina Gómez | lu a vi | 15 a 16 | O131 |
Ayudante | Luis Enrique Nava García |
0. Repaso
0.1 Solución Ecuaciones Diferenciales Método de Series
0.2 Ecuaciones Diferenciales Parciales: separación de Variables
1. Operador de Sturm Liouville y funciones especiales (2 evaluaciones, 50%)
1.1 Fourier (Evaluación presencial en salón de clase, 25%)
1.2 Bessel
1.3 Legendre y otras funciones
(Examen-tarea (15%) y examen oral (10%) de los módulos 1.2 y 1.3)
2. Transformaciones Integrales (Evaluación presencial en salón de clase, 25%)
2.1 Fourier
2.2 Laplace
3. Funciones de Green (Evaluación presencial en salón de clase, 25%)
Appel W. Mathematics for physicists. USA: Princeton University Press; 2007.
Arfken BA, Weber HJ, Harris FE. Mathematical methods for physicists, a comprehensive guide. 6th ed. USA: Academic Press; 2012.
Asmar NH. Applied Complex Analysis with Partial Differential Equations. Prentice-Hall, Inc., 2002.
Asmar NH. Partial differential equations with Fourier series and boundary value problems. USA: Pearson Education; 2005.
Brown JW, Churchill RV. Complex variables and applications. 8th Ed., McGraw-Hill Higher Education, 2009.
Haberman R. Applied partial differential equations with Fourier series and boundary value problems. USA: Pearson Education; 2012.
Marsden JE, Hoffman MI. Basic complex analysis. 3rd Ed., W. H. Freeman and Company, 1998.
McQuarrie DA. Mathematical methods for scientists and engineers. USA: University Science Books; 2003.
Weinberger HF. A first course in partial differential equations, with complex variables and transform methods. USA: Dover; 1995.