Encabezado Facultad de Ciencias
Presentación

Física (plan 2002) 2019-1

Cuarto Semestre, Electromagnetismo I

Grupo 8165, 70 lugares. 64 alumnos.
Profesor Juan Carlos Alonso Huitrón lu mi vi 16 a 18 103
Profesor Benito Juárez García
Ayudante Erika Araceli González Villa
Ayudante Angélica Carrillo Verduzco
 

06/08/2018

ELECTROMAGNETISMO I (Semestre 2019-1)

Profesor: Juan Carlos Alonso Huitrón, IIM-C-214, alonso@unam.mx

Profesor: Benito Juárez García, IIM-C-214, benito@ciencias.unam.mx

Ayudante: Erika Araceli González Villa, akire_hppmo@ciencias.unam.mx

Clave: 0419

Grupo: 8165

Salón: 103 Tlahuizcalpan, 56 lugares

Horario: Lu. Mi. Vi. 16:00 a 18:00 hrs.

Horas por semestre: 96 hrs

Ciclo escolar: Lunes 6 de agosto al viernes 23 de noviembre del 2018

Objetivos

A partir de la descripción de resultados experimentales sobre los fenómenos electromagnéticos se identifican los conceptos clave, se formulan los principios básicos, se desarrollan métodos de análisis y se estudian sus aplicaciones.

TEMARIO

1. FUERZAS ENTRE CUERPOS ELÉCTRICAMENTE CARGADOS EN REPOSO (12 hrs)

1.1 Carga eléctrica. Formas de electrización. Aislantes y conductores.

1.2 Ley de Coulomb.

1.3 Principio de superposición.

1.4 Campo eléctrico.

1.5 Líneas de campo eléctrico.

1.6 Flujo eléctrico.

1.7 Ley de Gauss.

1.8 Campo eléctrico de un dipolo eléctrico.

1.9 Campo eléctrico de distribuciones de carga.

1.10 Divergencia de una función vectorial.

1.11 Teorema de Gauss y la forma diferencial de la Ley de Gauss.

2. ENERGÍA DE CUERPOS ELÉCTRICAMENTE CARGADOS EN REPOSO

(12 hrs)

2.1 Energía potencial eléctrica.

2.2 Potencial electrostático. Superficies equipotenciales.

2.3 Potencial electrostático de una carga puntual, de varias cargas puntuales y

de distribuciones de carga. Potencial eléctrico de un dipolo eléctrico.

2.4 Cálculo del potencial eléctrico a partir del campo eléctrico.

2.5 Gradiente de una función escalar y obtención del campo eléctrico a partir del

potencial eléctrico. Ecuación de Poisson

2.6 Energía de una distribución de cargas.

2.7 Conductores cargados.

2.8 Condensadores. Capacitancia.

2.9 Energía almacenada en un condensador. Densidad de energía electrostática.

3. CAMPOS ELECTROSTÁTICOS EN MEDIOS DIELÉCTRICOS (10 hrs)

3.1 Dieléctricos.

3.2 Momentos de una distribución de carga.

3.3 Momentos dipolares inducidos y permanentes.

3.4 Polarización y susceptibilidad eléctrica. Densidades de carga libre y

polarización.

3.5 Ley de Gauss en medios dieléctricos.

3.6 Desplazamiento eléctrico. Constante dieléctrica.

3.7 Condensadores con dieléctricos.

3.8 Densidad de energía electrostática en medios dieléctricos.

4. CARGAS EN MOVIMIENTO (10 hrs)

4.1 Movimiento de cargas eléctricas en campos eléctricos externos.

4.2 Corriente eléctrica y densidad de corriente.

4.3 Ley de conservación de la carga eléctrica.

4.4 Resistencia eléctrica. Ley de Ohm macroscópica y microscópica.

4.5 Efecto Joule.

4.6 Circuitos eléctricos. Leyes de Kirchhoff.

4.7 Circuito RC.

5. CAMPO MAGNÉTICO (12 hrs)

5.1 Definición de campo magnético

5.2 Fuerza de un campo magnético sobre cargas eléctricas en movimiento.

5.3 Fuerza magnética sobre una corriente eléctrica

5.4 Campos magnéticos producidos por corrientes eléctricas. Ley de Biot-Savart.

5.5 Momento dipolar magnético.

5.6 Líneas de campo magnético. Flujo de campo magnético.

5.7 Ley de Gauss del magnetismo y la inexistencia de monopolos magnéticos.

5.8 Ley circuital de Ampère.

5.9 Rotacional de una función vectorial.

5.10 Teorema de Stokes y forma diferencial de la Ley de Ampère

5.11 Torca de un campo magnético sobre un momento magnético. Energía de un dipolo magnético en un campo magnético.

5.12 Movimiento de cargas eléctricas en campos magnéticos y eléctricos. Fuerza de Lorentz. Aplicaciones.

6. CAMPOS MAGNETOSTÁTICOS EN MEDIOS MATERIALES (8 hrs)

6.1 Momentos magnéticos permanentes e inducidos.

6.2 Magnetización y susceptibilidad magnética.

6.3 Ferromagnetismo, paramagnetismo y diamagnetismo.

6.4 Electroimanes.

6.5 Corrientes libres y de magnetización.

6.6 Ley de Ampère en medios materiales.

6.7 Campo de intensidad magnética. Permeabilidad.

7. INDUCCIÓN ELECTROMAGNÉTICA (10 hrs)

7.1 Ley de Faraday

7.2 Forma diferencial de la Ley de Faraday.

7.3 Generador de corriente alterna

7.4 Autoinductancia e Inductancia mutua.

7.5 Circuito RL.

7.6 Densidad de energía magnética

7.7 Oscilaciones de un circuito LC.

7.8 Circuitos RCL. Impedancia.

7.9 Circuitos de corriente alterna. Transformador.

8. ECUACIONES DE MAXWELL (8 hrs)

8.1 Ley de Ampère - Maxwell. Corriente de desplazamiento.

8.2 Propiedades dinámicas del campo electromagnético.

8.3 Ecuaciones de Maxwell.

8.4 La ecuación de onda.

9. ONDAS ELECTROMAGNÉTICAS (6 hrs)

9.1 Ondas electromagnéticas en el vacío. Superposición de ondas.

9.2 Velocidad de propagación. Espectro electromagnético.

9.3 Transversalidad. Polarización.

9.4 Teorema de Poynting.

9.5 Densidades de energía y de flujo de energía.

9.6 Ondas electromagnéticas en medios dieléctricos.

9.7 Índice de refracción.

9.8 Sistemas radiantes.

10. TEORÍA DE LA RELATIVIDAD Y ELECTRODINÁMICA (8 hrs)

10.1 Las ecuaciones de Maxwell y las transformaciones de Galileo.

10.2 Experimento de Michelson - Morley.

10.3 Transformaciones de Lorentz.

10.4 Algunas consecuencias de las transformaciones de Lorentz. Ejemplos y

paradojas.

10.5 Postulados de la Teoría Especial de la Relatividad.

10.6 Cinemática y dinámica relativista

10.7 Teoría cuántica de la luz. Fotones

Bibliografía básica

· Halliday, Resnick, Walker. Fundamentos de Física. Vol. II, 8ª. Edición, Grupo

Editorial Patria, (2011).

· · Purcell E.M., Electricidad y Magnetismo. Berkeley Physics Course, Vol. 2, Editorial Reverté, (2001).

· Resnick R., Halliday, D., Krane, S.K., Física, Vol. II, 5ª. edición, Compañía Editorial

Continental, México. (1996).

· Serway R. A. & Jewett J. W, Física II, 3ª. Edición, Thomson Learning, México

(2004).

· Serway, R. A., Electricidad y Magnetismo, Thomson Learning, México (2004).

· Taylor and Wheeler, Space Time Physics, 1966.

· Resnick R. Introducción a la Teoría Especial de la Relatividad, Limusa, México

(1977).

Bibliografía complementaria

· Alonso, M., Finn, E.J., Física, Vol. II: Campos y ondas, AddisonWesley Iberoamericana,

México (1995).

· Ohanian H. C & Markert J. T., Física para Ingeniería y Ciencias, Vol. 2, 3ª. Edición,

Mc-Graw Hill (2009).

· Sears F. W., Zemansky M. W., Young H. D., Freedman R. A., Física Universitaria,

Vol. 2, novena edición, Pearson Education, México (1999).

Historia del Electromagnetismo

· Gamow G., Biografía de la Física. Alianza Editorial. Madrid (1983).

· Ordoñez J., Navarro V. y Sánchez Ron J . M. Historia de la Ciencia. Colección

Austral. Editorial Espasa. Madrid (2003).

· Segrè E. De los Rayos X a los Quarks. Folios Ediciones S. A. México (1983).

· Whittaker E. A History of the Theories of Aether and Electricity. Dover. New

York (1989).

Evaluación

Tareas-examen semanales: 50 %

Exámenes parciales: 50 %

Notas: 1) no se aceptan tareas extemporáneas, 2) si se detectan copias de tareas se divide la calificación entre el número de copias, 3) solamente los alumnos que tengan más del 80% de tareas entregadas tendrán derecho a reposición de algún examen parcial, 4) no hay examen final.

 


Hecho en México, todos los derechos reservados 2011-2016. Esta página puede ser reproducida con fines no lucrativos, siempre y cuando no se mutile, se cite la fuente completa y su dirección electrónica. De otra forma requiere permiso previo por escrito de la Institución.
Sitio web administrado por la Coordinación de los Servicios de Cómputo de la Facultad de Ciencias. ¿Dudas?, ¿comentarios?. Escribenos. Aviso de privacidad.