

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS PLAN DE ESTUDIOS DE LA LICENCIATURA EN FÍSICA BIOMÉDICA

Programa de la asignatura

Geometría Analítica I

Clave:	Semestre:	Campo de conocimiento:				No. Créditos:	
1232	2°		Físico-Matemático			8	
Carácter: Obligatorio			Horas		Horas por semana	Horas al semestre	
Tipo: Teórico-Práctica			Teoría:	Práctica:			
ripo: reonco-Pracuo	Ua		3	2	5	80	
Modalidad: Curso			Duración del programa: 16 semanas				

Seriación: No () S i (x) Obligatoria () Indicativa (x)

Asignatura antecedente: Álgebra
Asignatura subsecuente: Álgebra Lineal

Objetivo general: Describir los conceptos geométricos fundamentales como: simetría, espacio vectorial, dimensión y transformaciones, contextualizados en el tratamiento coordenado de los objetos geométricos más sencillos correspondientes a las ecuaciones y desigualdades de primer y segundo grados en dos variables.

Objetivos específicos:

- 1. Plantear problemas geométricos con un lenguaje algebraico.
- 2. Interpretar problemas algebraicos a través de la geometría.
- 3. Plantear por medio de la geometría el Cálculo Diferencial e Integral.

Índice Temático					
Unidad	Toma	Horas			
	Tema	Teóricas	Prácticas		
1	Introducción	6	4		
2	Trigonometría	9	6		
3	Espacios vectoriales básicos	12	8		
4	Rectas, planos, semiplanos y semiespacios	9	6		
5	Cónicas	12	8		
	Total de horas:	48	32		
Suma total de horas:		80			

Contenido Temático					
Unidad	Temas y subtemas				
1	Introducción 1.1. Los conceptos geométricos elementales: distancia entre dos puntos, distancia de un punto a una recta, distancia de un punto a un plano; simetría respecto a un punto, respecto a una recta y respecto a un plano. 1.2. Introducción de coordenadas cartesianas en el plano y en el espacio y el método analítico.				

	1.3. Lugares geométricos del plano y el espacio definidos por ecuaciones y desigualdades
	elementales. Gráficas de funciones de primer y segundo grados en una y dos variables.
	Trigonometría
2	2.1. Razones trigonométricas; primeras relaciones. El teorema de Pitágoras.
	2.2. Resolución de triángulos. Congruencia. Semejanza.
	2.3. Rectas y puntos notables de un triángulo.
	2.4. Ángulo central y ángulo inscrito. Potencia de un punto respecto a una circunferencia.
	2.5. Funciones trigonométricas. Identidades trigonométricas.2.6. Coordenadas polares. Curvas en coordenadas polares.
	2.7. Curvas paramétricas.
	2.8. Coordenadas esféricas y cilíndricas. Superficies coordenadas. Superficies paramétricas.
	Espacios vectoriales básicos
	3.1. Definición y ejemplos de un espacio vectorial real (\mathbb{R}^2 , \mathbb{R}^3 las funciones reales de variable
	real; fuerzas planas y espaciales).
	3.2. Subespacios vectoriales; ejemplos.
3	3.3. Independencia lineal, conjunto generador, base, dimensión. Dimensión de una curva y de
	una superficie.
	3.4. Producto escalar, producto vectorial, triple producto escalar. Interpretación geométrica de
	cada uno y propiedades.
	Rectas, planos, semiplanos y semiespacios
	4.1. Ecuaciones cartesianas y paramétricas de la recta en ℝ². Fórmula para la distancia de un
	punto a una recta. División de un segmento en una razón dada. Semiplanos.
	4.2. Rectas en ℝ³; rectas que se cruzan, distancia de un punto a una recta. Distancia entre dos
4	rectas.
	4.3. Ecuaciones cartesianas y paramétricas de un plano en ℝ³. Distancia de un punto a un
	plano. Semiespacios.
	4.4. Sistema de ecuaciones lineales. Transversalidad.
	4.5. Sistemas de desigualdades lineales. Cónicas
	5.1. Definición, trazado y nomenclatura. Simetrías y extensión.
5	5.2. Ecuaciones canónicas; sistema coordenado "natural".
	5.3. Cónicas con ejes paralelos a los coordenados. Traslaciones.
	5.4. Rotaciones en \mathbb{R}^2 . Clasificación de formas cuadráticas (discriminante).
	5.5. Definición general de cónica (excentricidad). Secciones de un cono.
	5.6. La tangente a una cónica; propiedad focal.
	5.7. Cónicas parametrizadas.
	5.8. Familias de cónicas.

Bibliografía básica:

Bracho J. Geometría analítica [notas]. México: Facultad de Ciencias, UNAM: 2003. Disponible en:

http://www.matem.unam.mx/~rgomez/geometria/geometria.html/

Efimov N. Geometría superior. Moscú: MIR; 1984.

Preston GC, Lovaglia AR. Modern analytic geometry. New York: Harper & Row; 1971.

Ramírez- Galarza A. Geometría analítica, una introducción a la geometría. México: Las Prensas de Ciencias; 1998.

Bibliografía complementaria:

Eves H. Estudio de las geometrías. México: UTEHA; 1969.

Hilbert D, Cohn Vossen S. Geometry and the imagination, vínculos matemáticos No. 150. México: Facultad de Ciencias, UNAM; 2000.

40 0.0					
Sugerencias didácticas:		Mecanismos de evaluación del aprendizaje de los			
Exposición oral	(x)	alumnos:	-		
Exposición audiovisual	(x)	Exámenes parciales	(x)		
Ejercicios dentro de clase	(x)	Examen final escrito	(x)		
Ejercicios fuera del aula	(x)	Trabajos y tareas fuera del aula	()		

Seminarios Lecturas obligatorias Trabajo de investigación Prácticas de taller o laboratorio Prácticas de campo Otras:	() () () ()	Exposición de seminarios Participación en clase Asistencia Seminario Otras:	() () () ()	
Perfil profesiográfico: Matemático, físico, actuario, Licenciado en ciencias de la computación, especialista en el área de la asignatura. Con experiencia docente.				